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1. Introduction

Let M be a compact differentiable manifold of dimension s, and
(1.1 ¢: M — R*F

an immersion of M into a Euclidean space R"** of dimension n 4+ k. The
total curvature, in the sense of Chern and Lashof [1], [12], can be defined
as follows.

Let B be the set of unit normal vectors of M in R***. Then B is a bundle
of (k — 1)-sphere over M and is a manifold of dimension n + k& — 1. Let
S be the unit (n + k& — 1)-sphere of R***, d¢ the volume element of S, and

(1.2) Coon = fda
s

the volume of S. If
(1.3) v:B—S

is the Gauss map, which assigns each unit normal vector of B the unit vector
through the origin and parallel to the normal vector, then the total curvature
of the immersed manifold M is defined as

(1.4) 1 f[y*da| .

Crsk~1 B
Since the total curvature depends on M as well as ©: M — R*** we shall

denote it by ¢ (M, ¢, R™**) or simply by z(p).
The height function %, in the direction @ e R*** takes the value

(1.5 ho(x) = (a, p(x))
at xe M, where (,) denotes the usual inner product on R***. xeM is a
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critical point of h,, a ¢ R***, if and only if a is normalto M, and h,, a ¢ S has
a degenerate critical point if and only if @ is a critical value of the map
v: B — §. By Sard’s theorem, the image of the set of critical points of » has
measure 0 in S. Hence for almost all @ ¢ S, A, has only nondegenerate critical
points. Let 8(M,f) denote the number of critical points of a differentiable
function f defined over M. Then /M, h,) is well defined and is finite for
almost all e §. We have [12]

(1.6) M, g, RN = [ B, ho)do .

aes

So, to evaluate the total curvature z(gp), it is sufficient to determine the num-
ber of critical points of the height functions.

Let F be the set of differentiable functions on M whose critical points are
all nondegenerate, and define

(1.7) M) = inf, . B(M,f) .

It follows from Morse inequality [13, p. 29] that

(1.8) BM) > bM) = ] b(M) ,

where b;(M) is the i-th Betti number and »(M) the sum of Betti numbers of
M. Kuiper [12] has shown that

1.9) inf <(M, o, R**) = (M) .

An immersion ¢ : M — R™** is said to be minimal if z(p) = p(M). Given
a compact differentiable manifold M, it is not true in general that M can al-
ways be minimally immersed. As Kuiper has pointed out [12], if M is an
exotic sphere, it admits a function with two critical points and hence (M) = 2.
On the other hand, by a theorem of Chern and Lashof [1], an immersed com-
pact differentiable manifold M with (M, ¢, R***) = 2 is a convex hyper-
surface in some R™*! C R***, which implies that M is diffeomorphic to an
ordinary sphere. Ferus [3] proved that every imbedding of an exotic n-sphere
(n > 5) in R**? has a total curvature > 4.

If ¢(M) is not contained in any hyperplane of R***, then we say that the
immersion ¢: M — R™** is substantial. A theorem of Kuiper [12] asserts that
if o: M — R™* is minimal and substantial, then k < n(n 4+ 1)/2. He also gives
examples of minimal and substantial imbeddings of various codimensions
k,1<k<n(n+ 1)2, {12, pp. 82-83]. In particular, the Hopf imbeddings
of real projective space P,(R) into R***, n+ 1< k < n(n + 1)/2, are minimal
and substantial. In the same paper [12, p. 86], he exhibited a minimum im-
bedding of the real projective plane P,(R) into R*.
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Kobayashi [11] proved that every compact homogenous K#hler manifold
can be minimally imbedded into a Euclidean space. In particular, the Man-
noury imbedding [7, pp. 150-151] of a complex projective space P,(C) into
R®*1*-1 is shown to be minimal (cf. Remark 2.6).

In this paper, we are going to construct minimum imbeddings of compact
symmetric spaces of rank one in a unified fashion. Beside being minimal and
substantial, these imbeddings are also equivariant and isometric.

The problem is trivial for spheres. We will treat real, complex and quater-
nionic projective spaces in § 2, and the Cayley projective plane in § 3.

The author is deeply indebted to Professor S. Kobayashi who directed this
work. He wishes to thank Professor S. S. Chern who guided his interest in
this direction. Also he would like to thank Professors A. Friedman, H. C.
Wang and D. Zelinsky for their encouragements and mathematical education.

2. Projective spaces

Throughout this section, F will denote the field R of real numbers, the field
C of complex numbers or the field @ of quaternions. In a natural way,
R C C < Q. For each element x of F, we define the conjugate of x as follows.
If

(2.1) X=X+ Xl + X+ xkeQ,
with x,, x;, X,, X, € R, then
2.2) X=Xy — X — X,j — Xk .

If x is in C, then x coincides with the ordinary complex conjugate of x. If x
is in R, then X = x.
It is convenient for us to define

b

R
c,
Q

1 if F
2.3) d=d(F)=1{2 i F
(4 if F

0

.

Let x = (x,, - - -, x,) e F**'. A matrix 4 = (a;;), 0 < {,j < n, operates on
F**1 by the rule:

(2'4) Ax == e e

Qpo == Qppl Xy

The transpose and conjugate of a matrix 4 are denoted by ‘4 and 4,
respectively; A*dentes t4. We will use the following notations :
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(2.5) M+ 1, F) = thespace of all (n + 1) x (n + 1) matrices over F.
Hn+ 1,F) ={AdeM(n + 1, F)|A* = A}, the space of all

2.6
(2.9) (n + 1) X (n + 1) Hermitian matrices over F.

If AcH(n + 1, R), then A4 is symmetric.
2.7) Un+1,F)={XeMn+ 1, )| X*X =1},

where 1 denotes the identity matrix. Then U(n + 1, R) = 0(n + 1),
Un+1,C)=UMmn+1) and Un + 1, Q) = Sp(n + 1), in standard nota-
ions.

F™! can be considered as a Euclidean space of dimension (7 + 1)d. The
usual inner product for F*** = R™*»¢ js defined as

(2.8) (x, y) = Re(x*y) ,

where x and y € F**! are represented as column matrices. M(n + 1, F) can
also be considered as a Euclidean space of dimension (n + 1)*d, and

2.9 (A, B) = ReTr(AB*) , A, BeM@m + 1, F),
defines the usual inner product. If 4 and B belong to H(n + 1, F), then
(2.10) (4, B) = Tr(4B) .

We will endow H(n + 1, F) with this induced inner product.

Let P,(F) denote the projective space over F. Consider P,(F) as the
quotient space of unit ((z + 1)d — 1)-sphere {x = (x,, - - -, x,) € F**'{x*x =
1} obtained by identifying (x,, - - -, x,) with (x,4, - - -, x,4), where 2¢ F and
|2] = 1. Hence for x e P,(F), we can use homogeous coordinates

%,
(2.1 x=| .|, withx*x=1.

Xn

Consider the following map

(2.12) ©:P,(F) — H(n + 1, F)
such that

[Xo[2 XoXp -+« XX
(2.13) o(¥) = xx* — XX X xk,
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It is clear that this is a well defined function from P,(F) into a Euclidean

space of dimension (n by 1>d + n 4+ 1. The conditions x*x =1, Tr(p(x))

=1 and Z,‘ |x;!2 = 1 are obviously equivalent to each other. It follows that

the image of P,(F) under ¢ lies on the hyperplane
2.14) H@u+1,F)={X=(,)cHn +1,F)|¥ x, =1} .
=0

For x and y e P,(F), ¢(x) = ¢(¥), which is equivalent to xx* = yy*, implies
x =yA, with 2¢ F and |2| = 1. Thus ¢ is a substantial imbedding of P.(F)
into R¥, N = (n '2{' 1>d + n. We wish to show that ¢ is a minimum imbed-
ding.

Let U(n 4+ 1, F) act linearly on M(n + 1, F) in the obvious manner :
(2.15) X(A) = XAX* |

XeUn+1,Fand AeM(n + 1, F).

Lemma 2.1. The action of U(n + 1, F) preserves inner product of
M(n+1, F).

The proof is straightforward.

Lemm 2.2. The imbedding

:P(F) —H(n + 1, F)

is equivariant with respect to and invariant under the action of U(n + 1, F),
ie.,

(2.16) o(Xx) = X(e(x)) € p(P(F))

forxe P,(F)and X eU(n + 1, F).

The proof is straightforward.

Let Ae H(n + 1, F) and h 4 be the height function defined over P,(F) in
the diretion A. Then

(2.17) ha(x) = (4, o) = Tr(Ae(x)) = Tr(A(Exx®))
at xe P,(F). By Lemmas 2.1 and 2.2,
2.18) hynXx) = hs(x)y, XeUn +1,F).

On the other hand, foreach A e H(n + 1, F), there existsan X e U(n + 1, F)
such that X(4) = XAX* is a diagonal matrix. (The fact is well known
for R and C. We will deal with the quaternionic case in the appendix.)
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Therefore, to study the critical points of z,, we may assume that 4 is a dia-
gonal matrix,

Zo 0
(2.19) A= 2.

Then the height function takes the simple form:
(2.20) Ba®) = 3 AP, xePu(F).
i=0

The following is a standard trick to determine the critical points of %, on
P,(F) [13, pp. 26-27}.

Consider the following coordinate system. Let U, be the set of x =
(X9, X1, =+ =, X,) With X, 5= 0, and let

X0 Xx5t = u;

2.21) o
U = Uy + Unl + Up] + Ugk € F .

Then

(2.22) u:Up—R, 1<i<n, 0<a<d—-1,

are the required coordinate functions mapping U, diffeomorphically onto the
open unit ball in R*¢. Clearly

(2.23) fx, = 3 ui, 0<Lad—1.
2ol Nmlf=1—~ Y&,
(2.24) K PHEY & e
1<i<n,0<La<d-1,
so that
(2.25) hy =2 + 2 Qe — 2, »

1<i<n,0fa<d~-1,

throughout the coordinate neighborhood U,. Thus the only critical point of
k4 within U, lies at the center point

(2.26) P,=(,0,---,0)

of the coordinate system. At this point, %, is nondegenerate if and only if all
other eigenvalues are distinct from 4,.



MINIMUM IMBEDDINGS 61

Similarly one can consider other coordinate neighborhoods centered at the
points

(2'27) Pl::(O,l,"',0),"‘,Pn=(0,'-',0,1),

It follows that P, P,, - - -, P, are the only critical points of /4 ,. Thus we have

Theorem 2.3. For Ae H(n + 1, F) the height function h, defined over
P, (F) is nondegenerate and has exactly n + 1 isolated critical points if and
only if all eigenvalues are distinct from each each other.

Remark 2.4 (cf. [13]). Every nondegenerate height function has indices
id, 0 < i< n, respectively at n + 1 different critical points. From the cell
decomposition of such a function, it follows immediately that the sum of Betti
numbers b(P,(F)) =n + 1 if d(F)=2 or 4. But it is well known that
b(P,(R)) = n + 1. Therefore by Morse inequality (1.8), every nondegenerate
height function has g(M) (= n + 1) critical points, and we have proved

Theorem 2.5. The imbedding (cf. (2.14))

@:P(F) ~H@m + 1, F)

is substantial, minimal, isometric and equivariant.

The assertion that ¢ is an isometric imbedding follows from the fact that
there is a Riemannian metric, unique up to a constant factor, on P,(F) which
is invariant under U(n + 1, F), and the fact that the metric on P,(F) induced
by ¢ is invariant under U(n + 1, F) (Lemma 2.1). Or more generally, every
equivariant imbedding of an irreducible symmetric space is isometric, since
an invariant metric on a homogeneous space with irreducible linear isotropy
group is unique up to a constant factor.

Remark 2.6. In our notations, the Mannoury imbedding of complex pro-
jective space P,(C) can be described as follows [7, pp. 150-151]:

Let R™®*>* be a Euclidean space with coordinate system (X?, X**, Y*¥)
where A,k =0, 1, - - -, nand & = k. The imbedding P,(C) — R™*Y* is defined
by

Xh. = J—Z—xhxk = J?[xh[z N
(2.28) X*® = x, %, + Xpx;, = 2 Re x,%; ,
Yh'k = l‘(xhik -— jhxk) = 2Im th;c .
Then P,(C) lies in the hyperplane
(2.29) X s X =2

of R®*Y°, It is easy to see that this imbedding differs from ours only by an
affine transformation. It follows from Theorem 2.5 that the Mannoury im-
bedding is minimal by the following theorem of Kuiper [12]:
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Theorem 2.7. If ¢: M — R*** is minimal and A: R*** — R™~* is an affine
transformation, then A o ¢ is minimal.

Remark 2.8. In his paper “On isometric imbeddings of compact sym-
metric spaces” (to appear), Kobayashi exhibits the same type of imbeddings
for a class of symmetric spaces and conjecture that they are all minimal.

Added in proof. Kobayashi and Takeuchi have recently proved the above
comjecture.

3. Cayley projective plane

Let x = x, + xj;: + - -+ +x,5; be an element of the Cayley algebra over
the real field. Denote

(3.1

= Xo — Xjjy — - — Xql7,

i

the conjugate of x. Then the norm n(x) of x is equal to
3.2) XX =x2+ - + x%,
and we have
(3.3) n(xy) = n(x)n(y) , x,yeCay .
An element x = 0 € Cay has an inverse X/n(x).
If H(3, Cay) is the space of 3 X 3 Hermitian Cayley matrices, then
H(3, Cay) is a Jordan algebra under the following multiplication [9]:

(3.4) XoY =3XY +YX), X,YecHG,Ca).

For simplicity, we express an element X e H(3, Cay) in the form:

& x 2
(3.5 X=|x & ¥
2y &

Using the usual matrix unit E;; and setting E;; = E,, and let
(3.6) x;; = xE;; + XE;; ,

we can write

(3.7 X =&E + &E, + &Es + X + Yos + % -

The E; are orthogonal idempotents, and the trace and norm of X are defined
respectively as in [8]:
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(3.8) TriX) =6 +& + &,
(3.9) N(X) = §:6:8: + Tr((xy)2) — &n@) — §n(2) — &nx) .
The minimum polynomial of X is defined as
(3.10) NQI — X) = 2* — Tr(X)2 + 2(Tr(X)* — TrX®))2 — N(X) ,
and we have
(3.11) X — TrXOX* + HTr(X)* — Tr(XH)X — NI =0,

where I = E; + E, + E, is the identity matrix.
Following Jordan [10], we can define the Cayley projective plane P,(Cay)
as the set

X
(3.12) {(xx* e HB, Cap) | x*x = 1, x = | x, | € Cay®} .
X3
This set is equivalent to ([4], [6])
(3.13) (XcHG3, Cap)| X o X = X, Tr(X) = 1},
and is contained in
(3.14) H\3,Cay) = {XeH@G, Cay)|Tr(X) = 1} .

Consider H(3, Cay) as a Euclidean space of dimension 27 endowed with
the inner product

(3.15) X, V)=TrXY), X,YecHG3,Cay),

which is induced from the usual inner product of M(3, Cay), the space of
3 x 3 Cayley matrices considered as R™.

Lemma 3.1. An automorphism of the Jordan algebra H(3, Cay) preserves
the inner product,

Proof. From (3.11), the trace function is invariant under the automor-
phisms of H(3, Cay). The rest is straightforward.

The following two results can be found in Freudenthal [4]:

Lemma 3.2 [4, p. 25]. The automorphism group of H(3, Cay) is the
exceptional Lie group F,.

Lemma 3.3 [4, p. 26]. For each X ¢ H(3, Cay), there is an acF, such
that

(3.16) a(X) = 4E, + LE, + AE,
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i.e. the elements of H(3, Cay) can be diagonalized by the action of F,.
Lemma 3.4. P,(Cay) is invariant under the action of F,.
The proof is obvious from (3.13) and the fact that the trace function is
invariant under automorphisms. Now, we are going to show that the in-
clusion

(3.17) ¢: Py (Cay) — H(3, Cay)

is 2 minimum imbedding.

As in §2, we first consider the height functions %,, 4 € H(3, Cay). We
can also treat x = (x,, X, X;) € Cap®, x*x = 1, as a sort of homogeneous co-
ordinate for P,(Cay). Owing to Lemmas 1, 3 and 4, we may assume that

(3.18) A = AFE, + LE, + 4E; .
Then
(3.19) ha(x) = 4n(x;) + n(x) + n(x) .

(X1, Xy, X3) = (N1, ¥s, ¥y) implies n(x)) = n(yy), i =1,2,3. Hence it makes
sense to consider the following local coordinate system. Let U, be the set of
X = (X, Xy, X;) With x, 0, and let

(3.20) | X | X% = Uy + Ul + -+ + Ugfz
where | x,| =n(x,)"*. Then
(3.21) u,Uy—-R, 2<i<3, 0a<7,

are the required coordinate functions mapping U, diffeomorphically onto the
open unit ball in R*, Clearly

(3.22) nx) = 3 i, ,
a=0
(3.23) nx) =1—n@) —nEx)=1— 3 v},
2<1<3
0€a<T
so that
(3.24) ha(x) = 2; 23 (A — APud,
p2ist

throughout the coordinate neighborhood U,. Thus the only critical point of
h, with U, lies at the center point

P1=(13090)
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of the coordinate system. At this point, /4, is nondegenerate if and only if the
other two eigenvalues are distinct from 4,.

Similarly one can consider other coordinate neighborhoods centered at the
points

P,=(0,1,0), P,=(0,0,1).

If follows that P,, P,, P; are the only critical points of #,. Thus we have

Theorem 3.5. For A< H(3, Cay) the height function h, defined over
P,(Cay) is nondegenerate and has exactly three isolated critical points if and
only if all three eigenvalues are distinct from each other.

Remark 3.6. If 2, is nondegenerate, the indices at three different critical
points are respectively 0, 8, 16. From the cell decomposition of # 4, it follows
that the sum of Betti numbers b(P,(Cay)) = 3. Therefore every height func-
tion has the minimum number of critical points. Hence

Theorem 3.7. The inclusion '

¢: Py(Cay) — H,(3, Cay)

is a substantial, minimal, isometric and equivariant imbedding.

The equivariance follows from the fact that ¢ is an inclusion. ¢ is isometric,
since every equivariant imbedding of an irreducible symmetric space is iso-
metric (cf. Theorem 2.5).

4. Appendix

This appendix is based on Chevalley’s Theory of Lie Groups [2, Chapter
I, §§III-VII]. Most proofs are omitted, which can be either found, or proved
by similar arguments, for the complex case in that book.

Lemma 4.1. For each AcM(n 4+ 1, Q), there exists an x € Q™** such that
Ax =x2, 1€ Q.

The author is indebted to Professor Kobayashi for the following simple
proof.

Proof. If A is singular, then there is an x e Q"*! such that x # 0 and
Ax = 0. Suppose A is nonsingular. Since GL(n + 1, Q) is connected,
A~1:0"— Q"' where I is the identity transformation. Let A’ be the
induced map on P,(@). Then A’ ~ Id: P,(Q) — P,(Q), where Id is the identity
map of P,(Q). Therefore the Lefschetz number

@4.1) L(A4") = L(Id) = x(Px(Q)) = n + 1 = 0.

Hence, by Lefschetz fixed point theorem, A’ has a fixed point. Equivalently,
there exists an x e Q™** such that Ax = 2x.

Lemma 4.2 [2, p. 21, Proposition 2]. If a is a unit vector in Q**', there
exists a symplectic matrix X such that Xe, = a, where e, = (1,0, - - -, Q).




66 SHIN-SHENG TAI

Theorem 4.3. For each AcH(n + 1,0Q), there exists an X e Sp(n + 1)
such that X AX* is a diagonal matrix.

The existence of an eigenvector (Lemma 4.1) and Lemma 4.2 make the
inductive process possible. The proof is almost the same as the complex case
[2, pp.- 12-13]. We have also

Theorem 4.4. The eigenvalues of a Hermitian quaternionic matrix are
real numbers.
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